
Green
Coding
A

Climate change is one of the greatest challenges
that will face humanity in the coming decades;
information and communication companies can
make a difference with GreenCoding.

Shaping
the future
of digital
business

Green
Coding

White paper

The scope and potential of GreenCoding 05
A greener architecture 07
Adopting greener logic 11
Greener methods 15
A greener platform 18
The virtues of GreenCoding 21

It is the 20th January 2021. The new president
of the United States, Joseph R Biden Jr, has
just been inaugurated and now wants to take
action on climate change, promising $1.7 trillion
of investments in clean energy and net-zero
emissions in the United States by 2050.

Meanwhile, across the pond, the European
Commission has committed to providing
€100 billion in investments for the transition to
climate neutrality in the same period to
achieve policy objectives and commitments such
as the Paris Climate Agreement at COP 21.

Therefore, it is evident that reducing one’s
CO2 emissions will become an even higher priority
for companies and associations globally.

Motivation
A

Table of content
A

Shaping
the future
of digital
business

Green
Coding

White paper

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

9,000 terawatt hours (TWh)

1 WWF Germany, “Overcoming barriers for corporate scope 3 action in the supply chain”, https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Overcoming-barriers-for-corporate-scope-3.pdf, December 2020
2 Microsoft “Microsoft will be carbon negative by 2030”, https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-negative-by-2030/, September 2020
3 Huawei Technologies Sweden AB, “On Global Electricity Usage of Communication Technology:
Trends to 2030”: https://www.mdpi.com/2078-1547/6/1/117, April 2015

4 Enerdata, “Between 10 and 20% of electricity consumption from the ICT sector in 2030?”: https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-ict-sector-2030.html, August 2018
5 Springer Nature, “How to stop data centres from gobbling up the world’s electricity”: https://www.nature.com/articles/d41586-018-06610-y, September 2018

Networks (wireless and wired)

Furthermore, the growth in investment
in renewable energy sources and green
technology such as electric cars illustrate
that whilst these areas are significantly
gaining traction, they remain in their
infancy the next years; especially as in
2019, only 11% of the world’s primary
power was derived from renewable
sources. Therefore, the priority should
be on demonstrating reduced emissions
through innovating business processes
and value chain by taking a lifecycle
assessment approach which ensures that
overall energy and resource is reduced,
not merely lowering CO2 emissions.
Analysing core processes across the whole
value chain means that over time, by
implementing incremental changes,
you will be able to make a substantial
reduction not only in emissions and
resource usage, but further make
substantial gains in improving overall
efficiency.

Currently, most companies only focus on
their direct emissions, known as Scope
1 and 2 emissions according to the GHG
(Greenhouse Gas) Protocol. These are
mainly caused by certain processes of
goods production – e.g., refrigeration and
heating. But for many organisations the
biggest impact is derived from indirect
(Scope 3) emissions, also referred to
as value chain emissions such as those
linked to actually using products.1

Scope 3 emissions are particularly
relevant in the information and technology
sector, since emissions stemming from
development only account for a small
share. Using Microsoft as an example;
from a total of 16 million metric tons of
carbon emissions in 2020, about 75% fall
into scope 3.2 In general, programming is
always about efficiency of effort; but do
developers really take energy efficiency
into account when coding?

Production of ICT

Consumer devices (televisions, computers, mobile phones)

Data centres

Figure 1a:
Forecast of electricity demand of information
and communications technology (ICT)5

Best case 2030

Expected 2030

2015

40,000 TWH0 TWH

others

Figure 1b:
Global electricity
demands

Recent studies show that electricity demand in information and communication areas
currently account for between 5% and 9% of global electricity demand, and forecasts
predict this number could rise to as much as 21% by 2030.3,4

2 3—

https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Overcoming-barriers-for-corporate-scope-3.
https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-negative-by-2030/
https://www.mdpi.com/2078-1547/6/1/117
https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-i
https://www.nature.com/articles/d41586-018-06610-y

Why companies need to be aware
of this topic – and why programmers
should think twice about coding
A

Public awareness of the possibilities
offered by sustainable software
development is minimal, although
pioneers like Alex Russell and Jeremy
Wagner have been trying to change this
situation for some time.6,7 To make a
difference, it will be necessary to raise
awareness in all areas and amongst
all stakeholders – business, delivery,
consumers and creators.

From a business or management
perspective, this low awareness of
software energy consumption is mainly
driven by one factor; that development
and operating budgets are mostly
‘decoupled’. As a result, there is an obvious
conflict of interest. On one hand, more
development time needs to be invested
to carry out efficiency testing, but on the
other hand, operating costs rise when
you work less efficiently. Managers
therefore need to focus on sustainability
as the ideal outcome. They should move
away from the traditional priority, which
was purely about delivery performance
and cost reduction, and focus instead on
an across-the-board priority - optimising
software end-to-end.

Obviously, management is just the
first layer in this suggested change of
mindset. Software analysts, architects
and engineers also need to be engaged
if companies wish to embark on this
journey, based on the premise that
computers are merely machines, like
any other. Energy efficiency depends on

the software that machines run. All code
creates a carbon footprint, so the onus is
on all of us to ensure this footprint is as
small as possible.

If we think about this issue in terms of
ultimate performance on a global scale –
with cloud providers continuously
operating infrastructure servers, working
alongside other providers and companies –
there is considerable potential to save
energy. It should, however, be noted
that this not only applies to conventional
applications such as operating systems,
office technology or server applications.
Scaled up to hundreds, thousands
or even millions of devices (desktops,
smartphones, tablets...), every single
piece of code can make an important
contribution to reducing one’s energy
consumption, thereby helping to
reduce overall CO2 emissions.

6 “Alex Russell – The Mobile Web: MIA”:
https://vimeo.com/364402896, October 2019

7 “Responsible JavaScript” by Jeremy Wagner:
https://speaking.jeremy.codes/Vci5ad/responsible-javascript, October 2019

Shaping
the future
of digital
business

Green
Coding

White paper

https://vimeo.com/364402896, October 2019
https://speaking.jeremy.codes/Vci5ad/responsible-javascript, October 2019

(c) C
(c) Rust
(c) C++
(c) Ada
(v) Java
(c) Pascal
(c) Chapel
(v) Lisp
(c) Ocaml
(c) Fortran
(c) Swift
(c) Haskell
(v) C#
(c) Go
(i) Dart
(v) F#
(i) JavaScript
(v) Racket
(i) TypeScript
(i) Hack
(i) PHP
(v) Erlang
(i) Lua
(i) Jruby
(i) Ruby
(i) Python
(i) Perl

1.00
1.03
1.34
1.70
1.98
2.14
2.18
2.27
2.40
2.52
2.79
3.10
3.14
3.23
3.83
4.13
4.45
7.91
21.50
24.02
29.30
42.23
45.98
46.54
69.91
75.88
79.58

(c) C
(c) Rust
(c) C++
(c) Ada
(v) Java
(c) Chapel
(c) Go
(c) Pascal
(c) Ocaml
(v) C#
(v) Lisp
(c) Haskell
(c) Swift
(c) Fortran
(v) F#
(i) JavaScript
(i) Dart
(v) Racket
(i) Hack
(i) PHP
(v) Erlang
(i) Jruby
(i) TypeScript
(i) Ruby
(i) Perl
(i) Python
(i) Lua

1.00
1.04
1.56
1.85
1.89
2.14
2.83
3.02
3.09
3.14
3.40
3.55
4.20
4.20
6.30
6.52
6.67
11.27
26.99
27.64
36.71
43.44
46.20
59.34
65.79
71.90
82.91

(c) Pascal
(c) Go
(c) C
(c) Fortran
(c) C++
(c) Ada
(c) Rust
(v) Lisp
(c) Haskell
(i) PHP
(c) Swift
(i) Python
(c) Ocaml
(v) C#
(i) Hack
(v) Racket
(i) Ruby
(c) Chapel
(v) F#
(i) JavaScript
(i) TypeScript
(v) Java
(i) Perl
(i) Lua
(v) Erlang
(i) Dart
(i) Jruby

1.00
1.05
1.17
1.24
1.34
1.47
1.54
1.92
2.45
2.57
2.71
2.80
2.82
2.85
3.34
3.52
3.97
4.00
4.25
4.59
4.69
6.01
6.62
6.72
7.20
8.64
19.84

| ENERGY | TIME | MB

TOTAL

This is where so-called GreenCoding
comes in. The idea is to program,
deliver and run software in a much more
environmentally friendly way.

A key prerequisite for GreenCoding is to
fundamentally think again. This involves
taking a holistic approach to issues or
business problems and wherever possible
avoiding ingrained, automatic thinking –
or ‘sphexishness’.

GreenCoding starts with the planning of
a project when initial requirements are
being analysed. At this stage, the key
priority is to select a suitable platform
for the development process. Studies
have found that some programming
languages already have a major impact
on energy efficiency and speed; allowing
programmers to choose an appropriate
programming language can make a
massive difference when it comes to
energy savings and performance. It
should be noted that this is just an
example, however, depending on the
project, there could be decisions that
have an even greater impact.

Ultimately, GreenCoding will mean adding
a new question to the design process.
Teams need to question if there is a
better way to deliver the desired benefit
with the least possible amount of energy.
Answering this question may have a huge
impact on design. For example, it could
lead to a ‘serverless’ approach in order
to optimise infrastructure, or you might
decide to adapt the user experience to
minimise the time invested by the end
users of the software.

The scope
and potential of
GreenCoding
A

Sphexishness [sfɛksɪʃnəs] is a term coined
by Douglas Hofstadter for being caught in a rut
of automatic thought

Figure 2:
The energy, time and memory required by different languages for a benchmark problem8

8 Energy efficiency by programming language: https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf, October 2017

4 5—

https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf

GREEN SOFTWARE / GREENCODING

ARCHITECTURE

A GREENER
LOGIC

“WHAT”

is generated (the code
itself). Is it efficient
in terms of delivered
benefit or energy
invested?

A GREENER
METHODOLOGY

“HOW”

it is generated. Is the
software development
life cycle efficient?
Could the same code
be generated with less
energy?

A GREENER
PLATFORM

“WHERE”

the software is operated
(the final platform
running the code). Is it
consuming the minimum
energy required to run
the generated code?

There are three important pillars
when it comes to writing software:

These three pillars affect code in different
ways, and each needs to be dealt with
separately. However, the first task is to lay
the foundations on which these pillars
depend and establish a high-level overview
before implementing the delivery process
mechanisms.

Shaping
the future
of digital
business

Green
Coding

White paper

Regardless of how straightforward or complex the
software, how strict or simple the requirements, it is
essential to initially develop a vision of the expected
outcome. This can range from a simple conceptual
sentence to a detailed architectural document.
Whatever approach is taken, it will form the basis of
all subsequent decisions.

As a result, challenging the plan will probably have
major implications in terms of costs and timings
(which also implies energy may be wasted).

We will now explore some of the overarching
principles that will help define a more comprehensive,
sustainable vision for sustainable development.

A greener
architecture
B

6 7—

This approach is central to microservices
and serverless architectures – not only
when it comes to total shutdowns, but also
with respect to scalability or starting and
stopping replica modules around the world
due to demand fluctuations. Decisions
based on this approach will be reflected in
the final implementation and deployment
(also covered later in this document).

Striking the right balance can be a fine
art, especially if you have no comparable
experience to draw upon. If that’s the case
and you’re dealing with a new product,

go live anyway and track actual usage
patterns to see how systems behave and
identify potential optimisations. Regardless
of how much you already know about
demand levels, your code should always
be in a position to separate individual
sections and transform them into new
and autonomous modules. This is already
highlighted as best practice when writing
code for such designs, but it is also
useful to envisage how you want to split
individual sections separately, so you don’t
unwittingly keep components coupled.

The basic principles of saving energy at home can
(and should) also be applied to software design. In
the same way you should turn off the lights when
no one is in a room, you should shut down software
when nobody is using it. In keeping with this analogy,
note that we simply turn off the lights rather than
pull plugs out or deactivate the power for the entire
house. Accordingly, applications need to be designed
based on modular principles so they can be shut
down separately.

Shut down
when idle
b

Shaping
the future
of digital
business

Green
Coding

White paper

Delving deeper and analysing internal
services, another way to enhance
efficiency may be to prioritise resilience by
gearing certain sections of the software
towards potential unavailability.

One common approach is to add
procedural asynchrony; deliberately
‘misusing’ systems and collating jobs for
clustering and processing together and
in sequence. If tasks are not checked to
see if they require real-time processing,
all processing will automatically be
carried out in the default real-time mode.
Challenging whether real-time processing
is necessary may conclude that end-of-
day processing could be the most valid
and efficient approach to adopt. Even
once-per-hour processing could make
a difference, especially if requirements
allow for volumes to be processed in
consolidated batches at a later point in
time.

One could also apply this concept to
deliverables in order to improve overall
efficiency. Some operations that are
completed at runtime could also happen
during build time. One example is code
introspection (allowing certain sections

of code to inspect others and / or
generate new code at runtime), ensuring
there is no chance of performing code
generation during the build when the
final, executable file is being generated.
Another example could be the landing
page of a web application; where the
inner sections may be based on truly
dynamic content, but also the initial
landing content may change every day. In
this situation we may consider using static
site generation techniques, re-building
the page once (per release, per week, per
day or even per hour, depending on your
needs) and transforming any dynamic
content into static content that is much
easier to optimise in terms of energy
consumption. These examples (and many
other scenarios) could also be dealt with
by utilising caching along the lines of ‘lazy
build’ procedures. There is nothing wrong
with solving problems in this way, as long
as we continue to challenge the ‘just-in-
time’ requirements.

Avoid impulsive
consumption
b

When integrating green code criteria into
an architectural design, the lifecycle of the
software must always be considered; its
creation, use, maintenance and disposal.
To see the big picture, we must always
to consider the ultimate target audience
for the software. The first consideration
will be to examine factors relating to
humans or machines; will it be used by
human users or other systems? How many
users do we expect - dozens, or maybe
thousands? These lines of enquiry must
continue to ensure that the expected
usage frequencies and the duration of
average software interactions is properly
understood.

This analysis should provide a good
understanding of which elements within
the architecture will require the most
energy. For example, with back-office
software hosted on a shared server,
it is not unusual for any development
to generate a major energy footprint if

Focus your time and
energy investment
b

the software is actually only used for a handful of minutes per week (if at all). This
contrasts, for example, with a simple timetable application used by a university, which
may be required to generate thousands of images every hour. Saving even 0.1 of a
second to create such an image could save a significant volume of energy every year.

A good example of how even a small time saving
can have a huge impact could be optimising the
startup time for a virtual banking app used by
500,000 customers. By replacing loading screen
images and reducing their resolutions, opening
times may be reduced – even by one millisecond.
Assuming the average user opens the app at least
once a day, this could save over 50 hours
(or more than 2 days!) of operating time on mobile
devices per year.

8 9—

DELIVERY

Total (human) working
hours required to make
the application available

PROJECTED
MAINTENANCE

Total working hours per year

RUNTIME

Server uptime(s) per year
and over the expected
lifetime

USAGE TIME

Estimate of the time taken
to complete a single user
interaction (expressed
as a standard use case /
customer journey, which
is then multiplied by the
anticipated number of user
interactions per year over
the expected lifetime)

WAIT TIME

Estimate of the time spent
on the ‘Loading’… screen
for a single user interaction
(expressed as a standard
use case / customer journey,
which is then multiplied by
the anticipated number of
interactions per year over
the expected lifetime)

The numbers we are discussing here
should already be central to the process
of understanding non-functional
requirements and estimating initial efforts
and time investment in any project. From
a GreenCoding perspective, it makes
sense to come up with actual comparisons
of the time investment for each phase of

the development. This can be as simple
or as complex as required, but for the
sake of clarity, we will examine a relatively
simple use case. If we examine the energy
footprint of a team manager, a developer
and a tester using a laptop, we can them
5 each ‘units’. We can also provide the
server with 20 units, whilst each mobile

device user will account for 1 unit. This
initial approach may be oversimplified, but
even such a simple model will give you a
good general idea. If you want to make it
more granular, you can easily add as many
layers as you want.

Having a visualisation of the time spent on every stage of the software life cycle – even
if giving only a general idea – will help the whole software delivery chain gain a better
understanding of where to focus the efforts to reduce the energy footprint.

Shaping
the future
of digital
business

Green
Coding

White paper

Adopting
greener logic
B

Once the architectural foundations are set, it is time to then make things
tangible. It will often appear that everyday development decisions have
little impact on overall performance, but actually that is not the case and
one should avoid falling into this particular trap. Every decision matters. It is
rare to be lucky enough to cut loading time by 20% just by carrying out two
hours of recoding, however, sometimes this may be possible. Nonetheless,
these efforts are required if the goal of implementing sustainability
into software design is to be achieved. Likewise, even if the impact of a
certain decision may seem negligible in isolation, the ramifications of an
individual decision should never be ignored as these decisions multiply. Ten
‘virtually negligible’ impacts can combine to make a noticeable difference.
Performance always matters, regardless of scale.

The aim of this section of the paper is to provide the reader with some
ideas on how to pinpoint the potential performance enhancements from
GreenCoding. Some of these may apply to a live project or on a future
planned development. Some may deliver huge benefit with certain types
of software. With others, the time and effort invested will not be worth the
savings that are realised. The important thing is that everyone be aware of
these issues and that they are a focal point for future improvements.

10 11—

From a technical and delivery perspective,
coding is fundamentally about solving
problems. Originally, firms developed
bespoke customised solutions for each
problem and although it did not take long
for businesses to start offering publicly
available software, the actual revolution
came with open-source software and the
free distribution of licences. Pieces of
code were made publicly available, ready
to solve large or small problems, code that
could be further combined and extended.

As a result, delivery times and resource
investments have reduced significantly
over time, which is of course a positive
development. Nevertheless, as in the
physical world of environmentalism, just
because something is free, it does not
mean it should be used irresponsibly.
As much as 90% of modern software
contains open-source code developed
by third parties and whilst this is not
necessarily bad, potentially the problem
to be solved may be an exact fit with a
pre-existing library design. In addition,
as more external resources become
available, there is an increasing chance
that redundant sections of code will be
introduced (or may already have been).

This is particularly important with website
applications that require software to be
downloaded and installed every time
a user visits. Although code may be
‘free to consume’ by developers and
potentially has negligible impact on build
times, if code is used but not actually
needed by users to gain the benefits
they expected, it may waste network
time and CPU parsing time. It should be
remembered that browsers will parse any
information they are given so they can
execute it when needed, therefore it is
the responsibility of web developers to
ensure workloads are efficient.

For mobile or desktop applications,
network time is less relevant if applications
are only downloaded once by each user.
The initialisation time will, however, still be
affected by the bundle size.

Software that is always running on
dedicated servers is much less dependent
on bundle size, because it is only installed
once per quarter, for example. The volume
of data that is loaded to start software
has less impact on overall processing,
but if the requirement is to move to
cloud infrastructures or use microservice
architectures, it is important to consider
how much effort is required to move the
application from one server to another.
Clouds and clusters do make energy
consumption more transparent, but, once
again, this does not mean their carbon
footprint should be underestimated.

Startup times are still relevant and this
can affect the entire strategy; it may
be deemed appropriate to shut down a
non-critical API because its startup time
is one second and it does not exceed the
assumed delay to the operator of roughly
one second. If the delay were much
longer, for example five seconds, that
might not be acceptable. In this case the
API should never be shut down or should
be scaled more appropriately.

Again, issues can be approached from a
preventative or a corrective angle.

Bundle size issues can be prevented
by allocating a size budget (or a
performance budget). This involves
defining how big applications should
be and introducing automatic checks to
warn developers the instant a budget
is depleted. Budgets can also be used
to avoid large increments being made
for individual features. This allows
developers to focus on current required
changes rather than having to scan entire
projects to identify potential issues. This
approach is also useful if the requirement
is to quickly discount various options if
the first proof of concept has a significant
impact on overall size.

The first step is to focus on any code that
will never be executed. As mentioned
previously, attention should be given to
lines of code not written by the team, but
referred to as a dependency in order for
the code to run. Doing this manually can
be hugely time-consuming and extremely
risky. A good way to locate and remove
‘dead’ code safely is therefore to use
‘tree-shaking’ engines.

The impact of bundle size is not the
same in all areas; for example, it is more
common for such engines to be applied
to computer languages used for web
development (such as Javascript, where
all major bundlers include this feature
by default). It is also possible to find
such tools used for typical backend
languages (e.g. ProGuard for Java
and Kotlin). Nonetheless, this is a very
sensitive technique that requires the
right approach with respect to the library
(providing a fine-grained modularisation),
the developer (who will need to make
accurate references to library modules)
and the tree-shaking engine itself
(combining all of the information based
on a smart approach).

Tree-shaking engines are very sensitive,
therefore everything is dependent on the
developer and their attention to detail.
Introducing a third-party dependency
to a project has to be carefully thought
through. It is similar to inviting someone
as a guest into your house. At the very
least, developing sustainable software
requires a clear idea of the impact each
‘guest’ may have on the final outcome.
Of course the web developers will
have better insights into the delivered
code e.g. they will have more advanced
tools such as bundle visualisers, which
provide a visual map (boxes or pie charts)
showing the relative size of each section
of the code (including code borrowed
from open sources). Other coding
languages may not provide such focus,
requiring more manual coding. This
also makes it possible to modify third-
party libraries instead of only adopting
library content without adjustments.
Ultimately, ‘old-school’ techniques such
as accessing a library folder and charting
file sizes can also work well.

Zero waste
code
b

If a project is already
live, there always exist
ways to introduce
corrective measures to
reduce bundle size.

Shaping
the future
of digital
business

Green
Coding

White paper

Having grasped the impacts each dependency
has on your software, one can then prioritise
where to make efficiency improvements.
Sometimes the benefit-to-impact ratio is
poor, so the likelihood of success in replacing
the ‘unbalanced’ library with an alternative
(if it cannot be adapted) will need to be
weighed up. Of course the library itself may
be absolutely fine the way it is designed, but
it may just be a poor fit with the needs of the
system (for example, perhaps using a huge
charting library to draw a single bar chart that
could be created manually). At this point, it is
worth mentioning the sustainable use of open
source software, because this is currently
fuelling a stronger focus amongst open
source providers on ‘footprints’, especially
with respect to tree-shaking capabilities.
In the same way that supermarkets started
introducing environmentally friendly products
(and consumer awareness shaped the whole
delivery chain), GreenCoding also has the
potential to create a paradigm shift that
could shape the whole scene of open source
solutions.

Image:
Bundle visualizer example

Although developers should initially focus
on code, which can be energy-intensive
in processing terms, there is always
potential to make optimisations by
looking at other resources required by
your software.9

For example, how information is actually
organised can have an impact on
software. Naturally, this depends on
how such resources are used. It may not
take much effort to parse an inefficiently
structured file once a week, but if it
has to be transmitted over a network
hundreds of times every hour, this is a
clearly far from ideal.

Again, awareness is the hardest part.
The obvious option is to think about using
different file formats. Maybe an Excel
spreadsheet can be replaced by a simple
CSV file. Or an XML file can be stored as
a YAML file. Of all application resources,
there is one that probably stands out
most when it comes to overall impact:
images.

One of the most overlooked issues with
images is how they’re packaged. The first
decision that will need to be considered
is whether to use raster images (as with
bitmaps) or vectorial images (based on
simple lines and shapes). A good rule of
thumb is to use raster images for photos
or detailed drawings and to use vector
images for logos, symbols and charts.
Raster images should be properly sized.
Using a detailed 10 MB image for a
thumbnail reference is a huge drain on
resources. Note that image processing
has moved forward in leaps and bounds
in recent years and certain new generation
image formats (such as webp) have
been designed specifically for network
transmission.

Vector images were designed with
scalability in mind, so although it sounds
good, there’s no such thing as a default
size. Regarding format, SVG is the de
facto standard for vector images and
it can hardly be bettered. That said,
we would always advise developers to
optimise networks and processing by
clustering vectorial images into single
files (using sprites).

Low-footprint
resources
b

Staying on the topic of visual content,
but thinking about things from a different
angle, visual impressions can have an
impact on energy consumption. The
emerging concept of dark design is not
only changing design preferences but
is also unveiling new ways to reduce
the amount of energy used by displays.
Combined with OLED display technology,
which is mainly used on smartphones,
dark mode can reduce battery use by
up to 23.5%.10 Accordingly, offering
dark mode should be a high priority,
especially if you’re developing a web or
mobile application. Of course this also
has implications for marketing and brand
design. Giving users the option
of alternative (darker) colour schemes
can strengthen branding by adding
features that are consciously activated
by the user. Naturally, some users will
be more inclined to respond to such
options than others, but you can promote
adoption by suggesting switching to dark
mode under certain lighting conditions.

9 “The cost of JavaScript in 2019”: https://v8.dev/blog/cost-of-java-
script-2019, June 2019

10 “What is the impact of Dark Mode on battery drain”: http://mobilee-
nerlytics.com/dark-mode/, August 2019

12 13—

https://v8.dev/blog/cost-of-javascript-2019
https://v8.dev/blog/cost-of-javascript-2019
http://mobileenerlytics.com/dark-mode/
http://mobileenerlytics.com/dark-mode/

Whilst software is designed to deliver
benefits for the user, dealing properly
with information expiry dates can have
a major impact on required resources.
Any information provided to the user
must be classified in terms of its required
duration; information can be valid for
seconds, sometimes it is needed for days,
weeks or even for an unlimited period
of time. Combining this aspect with how
frequently information is requested gives
clarity for caching needs and potential
efficiency gains.

Caching (storing relevant data
temporarily in an intermediate layer)
can be done at several points in the
information flow:

The closer the cache is to the user, the
better. Sometimes it is useful to apply
caching to multiple layers.

It is worth mentioning here the impact
that social media and distributed storage
have had on how up to date users expect
information to be. Efficiency gains may
have an impact on the user experience,
so for example, it may be worth revisiting
the approach to images being delivered
to users. What do users look for? Do
they need a full view or they are just
looking for some results? What will be the
impact of holding back some images for
a minute or two? Or waiting an hour? Or
even a day?

It is surprising how even simple
compromises can significantly improve
efficiencies and how often it is entirely
acceptable to make such updates.
In terms of practical implementation,
however, it is advisable to have a data
or information architect analyse all data
feeds during the design phase. That
said, modern applications are based
on layered or distributed architectures,

which should provide detailed ongoing
usage metrics. Analysing metrics and
identifying potential feed optimisations
in the live environment (by locating
the most frequent requests and
origins) would be the best way to make
improvements, based on actual user
behaviour.

This is a particularly important with web
applications, since such systems transmit
their own interface software on each and
every user visit. There is also a wider
scope of potential optimisation in this
area, since it is easy to identify ‘almost
permanent’ content (e.g. a logo). As a
result, a couple of concepts emerge in
addition to regular HTTP caching:

01.
Progressive web applications (PWAs):
modern browsers can transform web
pages compatible with PWA standards
into applications. This technique provides
more elaborate logic capabilities in terms
of content expiration handling, as well as
offline support.11,12

Proximity feeds
b

STORAGE SERVICE VISUAL INTERFACE USER

02.
Content delivery networks (CDNs)
in edge locations: a CDN is a highly
distributed platform of servers that helps
minimise delays in loading web page
content by reducing the physical
distance between the server and the
user. CDN providers have created smart
and adaptable solutions to enable easy
enrolling of web applications and in
some cases, they can also act as an
additional caching layer for data between
services and the visual interface.

11 “Impact of Progressive Web Apps on Web App Development”:
https://www.researchgate.net/publication/330834334_Impact_of_Pro-
gressive_Web_Apps_on_Web_App_Development, September 2018

12 “Progressive Web Apps for the Unified Development of Mobile Applications”:
https://link.springer.com/chapter/10.1007/978-3-319-93527-0_4, June 2018

Shaping
the future
of digital
business

Green
Coding

White paper

https://www.researchgate.net/publication/330834334_Impact_of_Progressive_Web_Apps_on_Web_App_Develop
https://www.researchgate.net/publication/330834334_Impact_of_Progressive_Web_Apps_on_Web_App_Develop
https://link.springer.com/chapter/10.1007/978-3-319-93527-0_4, June 2018

Greener
methods
B

14 15—

One of the major challenges to succeed
with GreenCoding is awareness. All the
techniques previously described are
natural responses to increase efficiency
once stakeholders become aware of the
amount of energy that is being wasted.
As a result, the sooner a team becomes
aware of the energy impact of their
decisions, the easier it will be to improve
decision-making. This points directly to
feedback methods, which need to be
organised into rapid cycles.

On an overarching level, agile and lean
methods provide better opportunities
to adapt software to the principles
of offering benefit-driven screens, as
described in the previous section.13 On
a deeper level, applying continuous
integration and continuous delivery
allows you to visualise the final impact of
each development decision.14

Once a team has rapid feedback cycles
in place, it will need to define any metrics
to be used, based on any assumptions
regarding Green Code. Of course there
are plenty of complex metrics that could
be monitored, but the best return on
investment is most likely to with loading
times. These are easy to measure (and
watch with the naked eye) and directly
correlate with energy consumption.
Teams should keep records of initial
loading times and for main interactions.
Obtaining such metrics is usually
standard practice with projects, but only
in the final stages in order to ask, ‘is this
functionally acceptable?’.

Tracking loading and interaction times
from the outset is a highly effective way
to focus on sustainability.

In practical terms, the development team
should start with the basics (i.e. ‘Hello
world’ loading times) then tag each new
feature and its impact. Obviously, initial
functions such as accessing storage will
have a significant impact. It is essential
to ensure there is a clear picture of
the before and the after situation so,
whatever the impact may be, that there
is enough information to properly
evaluate if the value provided by the
change delivered a worthwhile benefit.
As long as significant increments are
challenged, sustainability objectives will
be met. On rare occasions, there may
be obvious resource-intensive routines
that play a defining role in loading or
interaction times that unwittingly conceal
underlying inefficiencies. To reveal
such inefficiencies, scenarios should
be created where wasteful processes
are replaced by almost instantaneous
‘pre-recorded’ responses, providing a
secondary set of performance metrics
that are unaffected by the resource-
intensive routines.

Rapid feedback,
better decisions
b

Whilst developers are encouraged to
apply continuous integration (CI) and
continuous delivery (CD) techniques to
support rapid feedback cycles, attention
should also be given to configuration.
Careless configurations of CICD tools
may lead to complex integration tests
running automatically more often than
desired or even required. It is essential
to ensure that development teams
strike the right balance between gaining
automatic feedback and maintaining
sufficient resources to process or react
to feedback. One way to achieve large
saving, both in terms of direct energy
consumption (CPU time) and indirect
energy consumption (time spent by
developers waiting for feedback), is to
apply incremental building techniques.15
This involves only recompiling modified
sections of code instead of entire
deliverables, or only testing rewritten
code and systems affected by recompiled
code. Build outputs should also be
shared between developers and CICD
systems.

This mindset needs to change to improve
efficiency – even if loading times may be
acceptable from a usability perspective,
if an application were scrutinised according
to GreenCoding principles, slow loading
times would not be considered sustainable.

13 “Lean and Agile: differences and similarities”: https://twproject.com/blog/
lean-agile-differences-similarities/, November 2018

14 “Continuous integration vs. continuous delivery vs. continuous deployment”:
https://www.atlassian.com/continuous-delivery/principles/continuous-in-
tegration-vs-delivery-vs-deployment

15 “Incremental Model in SDLC: Use, Advantage & Disadvantage”:
https://www.guru99.com/what-is-incremental-model-in-sdlc-advanta-
ges-disadvantages.html, November 2020

Shaping
the future
of digital
business

Green
Coding

White paper

https://twproject.com/blog/lean-agile-differences-similarities/
https://twproject.com/blog/lean-agile-differences-similarities/
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deplo
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deplo
https://www.guru99.com/what-is-incremental-model-in-sdlc-advantages-disadvantages.html
https://www.guru99.com/what-is-incremental-model-in-sdlc-advantages-disadvantages.html

Understanding the opportunity to make
software more sustainable does take
time and effort, but it is an important
starting point. Teams, companies and
business units are heterogeneous by
nature, and as a result, they will also
naturally adopt different approaches to
GreenCoding. It is entirely possible that
organisations will need to introduce and
examine benchmark data for a number
of days. In other instances, it may only
take a couple of minutes and a few
simple sketches to understand what is
happening. Either way, in most cased the
team will have started in a position of
uncertainty, faced with challenges and
new requirements, involving time and
energy being invested into generating
new output. Best practice is to organise
and share this in a way that is accessible
and legible to other team members, the
entire organisation, or even the wider IT
community.

Leaving the community of developers
to tackle the same issues and problems
again themselves means having to start
from scratch (even on a GreenCoding
project), which clearly wastes time, effort
and therefore energy.

It is important to highlight the positive
impacts of making efficiency changes to
projects for a number of reasons. Estab-
lishing metrics regarding the efficiency
contributions made by undertaking specific
actions within projects, such benefits can
then be extrapolated to other projects
with similar conditions. Having such
metrics sidesteps the need to quantify

Reusable
output
b

benefits a second time by carrying out
benchmarking, with new actions being
based on assumed net gains during the
design process. Ultimately, the objective
for any team applying GreenCoding princi-
ples should be to minimise the number of
required corrective measures, by draw-
ing on a reliable arsenal of preventive
measures. As highlighted above, project
contexts are heterogeneous by nature,
so nothing in this area is merely ‘black or
white’; success ultimately depends on the
ability to capture and index customised
sets of preventive measures that will be
relevant to development projects.

Part and parcel of sustainable software development
is ensuring that the results of GreenCoding projects
are available to others and can be searched by team
members, people within the organisation or even
the community at large, and this procedure should
also remain efficient in itself.

16 17—

A greener
platform
B

Examining GreenCoding from a broader
perspective, considerations regarding
the right infrastructure for running code
are as crucial as the code itself. When
it comes to hardware and computing
power, utilisation levels are crucial. Why
do utilisation levels have such a strong
influence on energy efficiency?

Shaping
the future
of digital
business

Green
Coding

White paper

PO
W

ER

0 50% 100%

100 W

200 W

180 W

UTILIZATION

Figure 3:
Energy proportionality

This concept is known as energy
proportionality, with higher utilisation
levels resulting in lower energy
consumption per percentage point of
utilised computing power.

Low server utilisation rates are a common
problem. They are usually caused
by a tendency during planning to
overestimate how much software and
therefore server capacity will actually
be used. For example, developers may
anticipate too many users or expect
more users to come on board later
down the line. Based on their incorrect
assumptions, computing power is often
extrapolated over several years resulting
in significantly oversized systems. Since
most systems run multiple applications,
it can be impossible to pinpoint energy
consumption for a specific application,
such as a program running on a shared
monolith, alongside several other
applications.

One effective way to work out what is
happening and to track the energy
consumption of a specific application
is to use the cloud, not because cloud
providers are better at maths and have
more accurate numbers, but simply
because in an operational sense
you wate less resource. With cloud
computing, your see straightforward
correlations – the higher the invoice, the
more energy was consumed.

Using the cloud can also significantly
influence energy consumption. As
described earlier, higher hardware
utilisation levels are also more energy-
efficient. This is why cloud computing
offers a useful potential to save energy.
Even when your internal / on-premise
servers are idle, they are still using
energy. Public cloud systems are based
on principles of high modularity, making

it possible to control utilisation levels more
precisely than with non-modular systems,
especially if you are running modules
that cannot be switched off to stop them
consuming energy when they are not in
use.

According to a paper published by the
Natural Resources Defense Council
(NRDC), the cloud server utilisation
levels of large providers such as AWS,
Google Cloud and Microsoft Azure stand
at around 65%.16 This compares to on-
premise data centres, which typically
run at utilisation levels of between
12% and 18%. Keeping in mind the
previously mentioned concept of energy
proportionality, this equates to significant
disadvantages in terms of energy
efficiency.

Another important aspect when it comes
to improving energy efficiency is the
design of technical infrastructure, for
example, cooling technology. Large
investments in system efficiency will
transform into important cost reductions
for providers, offering plenty of
motivation to merge environmental gains
with economic benefits. Large-scale
infrastructure improvements can help
reduce power consumption by up to 29%
versus typical on-premise data-centres.17

Optimal
utilisation
b

Google Cloud has taken efficiency one
step further and now uses machine
learning to reduce energy required for
cooling purposes by up to 40%.18

The final part of the equation when it
comes to minimising the carbon footprint
of cloud computing is the energy source,
or so-called power mix. One goal that all
public cloud providers have in common is
to be solely reliable on renewable energy
for powering cloud infrastructure. Some
are closer to achieving this goal than
others.

High utilisation levels, efficient
infrastructure design and a clean power
mix are thus key drivers when it comes
to minimising the environmental impact
of cloud computing. These are areas
where the large cloud providers have
clear advantages. Even if the technology
they offer is energy-intensive, they
are in a position to systematically
improve infrastructure and make cloud
computing more efficient.

The energy consumed by a computer system is not
proportional to utilisation levels.

More money spent on
cloud computing usually
equals more energy
consumed.

16 NRDC, “Data Center Efficiency Assessment”: https://www.nrdc.org/sites/
default/files/data-center-efficiency-assessment-IP.pdf, August 2014

17 AWS News Blog, “Cloud Computing, Server Utilization, & the Environment”:
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-
the-environment/, June 2015

18 Google Blog, “DeepMind AI reduces energy used for cooling Google
data centers by 40%”: https://blog.google/outreach-initiatives/environ-
ment/deepmind-ai-reduces-energy-used-for/, July 2016

18 19—

https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://aws.amazon.com/blogs/aws/cloud-computing-server-utilization-the-environment/
https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/
https://blog.google/outreach-initiatives/environment/deepmind-ai-reduces-energy-used-for/

Any product used these days is likely to
run without any issues under its default
configuration. Despite this, running
software on a platform with default
configuration settings (regardless of
whether it is based on a server, a container
or using serverless methods) is like
wearing shoes without tying up the laces;
they may feel okay, but are extremely
unlikely to fit properly. Similarly, ill-fitting
platform configurations are another way
of wasting energy. Of course it depends
on the platform and how much flexibility
there is to fine-tune configurations, but
it is desirable at least to understand the
options and the implications of using
the default settings.

For example, by considering the
configuration options it may be possible
to uncover inefficient and suboptimal
network communications; perhaps

HTTP2 and / or gzip compression
settings were never enabled? Similarly,
a Java virtual machine may be struggling
to deal with garbage collection because
of insufficient memory allocation.
Perhaps there is so much information
moving around within headers across
internal or even external networks, that
transmission levels are almost double
what they need to be?

Unfortunately, it is very rare for
developers to look into these topics in
depth until a performance issue crops up,
and when they do, they may only be in a
position to make ‘tweaks’ to alleviate the
current problem. Having to quickly resolve
the issue is then a missed opportunity to
achieve something better. Sustainable
software delivery should keep a close
eye on platform capabilities, not just at
release, but also during the entire lifetime

Precise
configuration
b

of an application. It is often said that “if
it’s not broken, don’t fix it”, but for the
greater good, it does sometimes make
sense to challenge this first principle of
computing.

As outlined earlier, it is crucial to focus
efforts on the right areas and strike
the correct balance between invested
time and efforts on one hand, and
performance / usability enhancements on
the other. The challenge is that often not
all the required and accurate information
is available, therefore decisions have to
be made on averages and projections.
The first step should therefore always be
to use what data points are available, but
in the longer better tools and metrics will
be needed in order to refine the strategy.

Regardless of whether servers are on-
premise or part of a cloud arrangement,
they are already a focus area for energy
reduction efforts. This is especially relevant
for cloud providers that own massive
server infrastructures and therefore
can leverage bigger savings from any
improvements they achieve. This enables
them to dedicate significant efforts (in time
and money) to investigate new ways of
reducing energy consumption. In parallel,
they also track the ecological impact of
energy they consume in order to reduce
their overall CO2 footprint.

One aspect that often gets overlooked
when assessing system efficiency is
that of ‘hidden’ infrastructure, namely
personal devices. For many, personal
devices are only important when it comes
to customer satisfaction. However,
from a holistic standpoint, they are
very important for software developers
because they are prolific, connected and
add to the overall energy footprint.

By their very nature, the laptops, tablets
and smart devices used will be extremely
diverse, as are the users themselves
and their individual behaviours, which
combine to create a very complex model.
Of course a focus on the user experience
is key, and specifically we can investigate
how ‘green’ is the energy that feeds
the end-user devices. Energy costs in
different countries can be examined
to understand the impact of wasted
energy relative to GDP, user income or
other metrics. We must also overlay that
technology landscape for users in the
developed world will very different from
those in underdeveloped nations; saying
that, even in developed countries network

Holistic metrics
b

bandwidths in remote and rural areas can
very unreliable and unstable.

If the development community can align
behind a common understanding and
support the primary objectives of Green
Coding, it is certain to come up with
innovative solutions and inventive ways
to tackle the new challenges we face on
a global basis.

Shaping
the future
of digital
business

Green
Coding

White paper

The virtues of
GreenCoding
B
Once a GreenCoding perspective is
established within an organisation,
we have seen that the principles of
GreenCoding can align very well with
the iterative cycles and data-driven
methodology of Agile development. This
development approach provides the
perfect opportunity for the principles
to be assimilated into every part of the
CICD, process thereby transforming how
software is delivered.

However, this approach to software
design is in its infancy as within Green
Coding’s current methodology, there
is one particular problem that needs
addressing: it can prove to be time-
intensive which would then mean
projects may take longer than expected
and therefore project costs might
increase.

As such, this paper is specifically
designed to challenge current thinking
and attitudes towards software
development, as well as provide examples
of how the environmental impact of
the entire software life-cycle can be
reduced. It must be stressed that the
climate emergency can only be solved
through widespread collaboration.
Taking a collaborative and problem-
solving approach and innovating current

processes within the tech and IT industry,
it us up to individual organisations to
pave the way forward. As an innovator
with the software development industry,
GFT has outlined a blueprint, whereby
as in other sectors and industries, Green
Coding has the potential to do more than
simply reducing emissions.

Specifically, the GreenCoding approach
for software development can be
summarised as follows:

 ■ Improving software by making it more
energy efficient also has the potential to
make it easier to use and faster.

 ■ Enhancing the user experience, and
allowing software to be offered to an
even wider target audience

 ■ Operational software costs become
more efficient, resulting in important
cost savings for companies.

The concept of GreenCoding
is still in its infancy and
ideally something that can
be put into practice over
time; a philosophy that can
be gradually implemented,
provided that time expended
on individual projects are
not overly extended. It is
evident that GreenCoding has
great potential in starting a
global movement amongst
developers, and can be
considered as a bold new
‘green frontier’ for software
developers.

Whilst the efficiencies of
cloud computing has been a
major catalyst of change, in
the future, GreenCoding is
how all software can be made,
especially in a global context
where we are all striving
towards a sustainable and
connected planet.

20 21—

RESPONSIBLY SHAPING THE DIGITAL FUTURE – our clear commitment to our
stakeholders and society. As a technology service provider, our sustainability
focus lies with GROW TECH TALENT WORLDWIDE on the promotion of IT talents
and with SUSTAINABILITY BY DESIGN on the ecologically as well as ethically
responsible development and application of technologies.

� gft.com/sustainability #gftCSR

Benedict Bax
A

Executive Assistant
to the CEO at GFT

Benedict is the Executive Assistant to
the CEO at GFT Technologies offering
comprehensive support to the global
management team covering all areas of
the business. Their experience ranges
from technological development to
business-strategy thus demonstrating
an interdisciplinary approach to
the environment and technological
sustainability.

Our authors
b

Alejandro Reyes Ferreres
A

Software Architect
at GFT

Alejandro is a Software Architect at
GFT Technologies and has a deep
technological understanding of API’s
and Frontend development.

With his professional background he has
continuously developed the GreenCoding
initiative at GFT offering original ideas
in its application as well as proofing
GreenCoding’s key concepts.

Gonzalo Ruiz De Villa Suárez
A

CTO at GFT

Gonzalo is GFT’s Chief Technology
Officer and is responsible for the
company’s technology and innovation
strategy, by incubating emerging
technology initiatives globally, leading
R&D projects in the GFT lab and
implementing the latest innovations
with clients and the partner ecosystem.
Gonzalo is responsible for the
GreenCoding initiative at GFT building
incremental, transparent and trusted
insights on how the IT industry can make
a difference for our climate.

Shaping
the future
of digital
business

Green
Coding

White paper

http://www.gft.com/sustainability

As an IT services and software engineering
provider, GFT offers strong consulting
and development skills across all aspects
of pioneering technologies, such as
cloud engineering, artificial intelligence,
mainframe modernisation and the Internet
of Things for Industry 4.0.

With its in-depth technological expertise,
profound market know-how and strong
partnerships, GFT implements scalable
IT solutions to increase productivity. This
provides clients with faster access to new
IT applications and innovative business
models, while also reducing risk.

Founded in 1987 and located in more than
15 countries to ensure close proximity to its
clients, GFT employs 6,000 people.
GFT provides them with career opportunities
in all areas of software engineering and
innovation.

The GFT Technologies SE share
is listed in the Prime Standard
segment of the Frankfurt Stock
Exchange (ticker: GFT-XE).

This report is supplied in good faith,
based on information made available
to GFT at the date of submission. It
contains confidential information that
must not be disclosed to third parties.
Please note that GFT does not warrant
the correctness or completion of the
information contained. The client is
solely responsible for the usage of the
information and any decisions based
upon it.

GFT is driving the digital
transformation of the world’s
leading companies in the
financial and insurance
sectors, as well as in the
manufacturing industry.

 blog.gft.com  
 twitter.com/gft_en  
 linkedin.com/company/gft-group  
 facebook.com/GFTGroup  
 >gft.com

About GFT
b

GFT-210319-WP-GREENCODING-EN-BTBX-RARR © GFT 2021GFT Technologies SE BSchelmenwasenstr. 34, 70567 Stuttgart, Germany BT. +49  711  620  420 Bwww.gft.com Binfo@gft.com

22 23—

http://blog.gft.com
http://twitter.com/gft_en
http://linkedin.com/company/gft-group
http://facebook.com/GFTGroup
http://www.gft.com
http://www.gft.com
mailto:info%40gft.com?subject=GFT%20GreenCoding

