
Secure
Terraform
Delivery
Pipeline
 B
With the beginning of the cloud era, the
need for automation of cloud infrastructure
has become essential. Although still very
young (version 0.12), Terraform has already
become the leading solution in the field
of Infrastructure as Code. A completely
new tool in an emerging area, working in
a new programming model – this brings
a lot of questions and doubts, especially
when handling business-essential cloud

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Development

Implement Change

CD pipeline:
Terraform apply

CD pipeline:
Terraform apply

CD pipeline:
Terraform apply

CD pipeline:
Terraform apply

CD pipeline:
Run automated checks
and policies (prod-like
controls)

CD pipeline:
Run automated checks
and policies (prod-like
controls)

Pull request & code review

Review and approve plan
in a time span (e.g.) 1 hour)

Review and approve plan
in a time span (e.g.) 1 hour)

Sign-off environment

Merge into ‘master’

Pull-request CI build:
 ■ Terraform validate all

environment
Terraform plan in dev
environment

 ■ Check Terraform
policies (e.g.) Sentinel)

Master CI build:
 ■ Give a unique veresoin

number
Terraform validate all
environment

 ■ Check Terraform
policies (e.g.) Sentinel)

TestEnv Stage Env Prod Env

CD pipeline:
Terraform apply

CD pipeline:
Terraform apply

Review and approve plan
in a time span (e.g.) 1 hour)

Sign-off environment

 ■ Use ‘test’ Terraform
system account

 ■ Use non-prod
deployment agents

 ■ Use non-prod
Terraform backend

 ■ Use ‘stage’ Terraform
system account

 ■ Use non-prod
deployment agents

 ■ Use non-prod
Terraform backend

 ■ Use ‘prod’ Terraform
system account

 ■ Use non-prod
deployment agents

 ■ Use non-prod
Terraform backend

The goal is to create a process that
allows a user to introduce changes into
a cloud environment without having
explicit permissions for manual actions.
The process is as follows:

 ■ A change is reviewed and merged with
a pull request after a review of the
required reviewers. There is no other
way to introduce the change.

 ■ The change is deployed to a test
environment. Before that, the
Terraform plan is reviewed manually
and approved.

 ■ The change needs to be tested/
approved in a test environment.

 ■ The Terraform plan is approved for
the staging environment. The change
is exactly the same as in the test
environment (e.g. the same revision).

 ■ Terraform changes are applied to
staging using a designated Terraform
system account. There is no other way
to use this Terraform account as in this
step of the process.

 ■ Follow the same procedure to promote
changes from staging to the production
environment.

01.
Why a secure Terraform
pipeline is needed?
A

At GFT, we face challenges of delivering Terraform deployments
at scale: on top of all major cloud providers, supporting large
organizations in a highly regulated environment of financial
services, with multiple teams working in environments in multiple
regions around the world. Automation of Terraform delivery
whilst ensuring proper security and mitigation of common risks
and errors is one of the main topics across our DevOps teams.

2 3—

01.1
Non-functional
requirements
A

Environments
Environments (dev/uat/stage/prod) have a
proper level of separation ensured:

 ■ Different system accounts are used
for Terraform in these environments.
Each Terraform system account
has permissions only for its own
environment.

 ■ Network connectivity is limited
between resources across different
environment

 ■ (Optional) Only a designated agent or
set of agents configured in a special
virtual network is permitted to modify
the infrastructure (i.e. run Terraform)
and access sensitive resources (e.g.
Terraform backend, key vaults etc). It
is not possible to release to e.g. prod
using a non-prod build agent.

There is a way to ensure that Terraform
configuration is as similar as possible
between environments. (I.e. I cannot forget
about the whole module in PROD as
compared to UAT)

Terraform backend in higher environments
(e.g. UAT) is not accessible from local
machines (network + RBAC limitation). It
can be accessed only from build machines
and optionally from designated bastion
hosts.

System accounts for Terraform
Terraform runs with a system account
rather than a user account when possible.
Different system accounts are used for:

 ■ Terraform (a system user that modifies
the infrastructure),

 ■ Kubernetes (a system user that is
used by Kubernetes to create required
resources e.g. load balancers or to
download docker images from the repo

 ■ Runtime application components (as
compared to build-time or release-time)

System accounts that are permitted
to Terraform changes can be used
only in designated CD pipelines. I.e. it
is not possible that I can use e.g. a
production Terraform system account in
a newly created pipeline without a
special permission. (Optional) Access
to use the Terraform system account is
granted “just-in-time” for the release.
Alternatively, the system account is
granted permissions only for the time
of deployment.

System accounts in higher environments
have permissions limited to only what is
required in order to perform actions. Limit
permissions to only the types of resources
that are used.

Remove permissions for deleting critical
resources (e.g. databases, storage)
to avoid automated re- creation of these
resources and losing data. On such
occasions, special permissions should be
granted “just-in-time”.

Process
A change to a higher environment
(e.g. STAGE) can be deployed only if it was
previously tested in a lower environment.
There is a method to ensure that this is
exactly the same Git revision tested. The
change can only be introduced with a pull
request with a required review process.

An option to apply Terraform changes
can be only allowed after manual
terraform plan review and approval on
each environment.

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

02.
Implementing a
secure Terraform pipeline
A

TIP! Take a look at this external documentation to start setting up Terraform in CI/CD pipelines:

 ■ Running Terraform in Automation
 ■ Terraform Cloud
 ■ Terraform Enterprise
 ■ How to Move from Semi-Automation to Infrastructure as Code
 ■ How to Move from Infrastructure as Code to Collaborative Infrastructure as Code

02.1
Terraform
backends
A

Having a shared Terraform backend is the
first step to build the pipeline. A Terraform
backend is a key component that handles
shared state storage, management, as well
as locking, in order to prevent infrastruc-
ture modification by multiple Terraform
processes.

Some initial documentation:

 ■ Terraform Backend Configuration
 ■ backend providers list
 ■ AWS s3
 ■ GCP cloud storage
 ■ Azure storage account
 ■ Remote backend for Terraform Cloud/

Enterprise

Make sure that the backend infrastructure
has enough protection. State files
will contain all sensitive information that
goes through Terraform (keys, secrets,
generated passwords etc.).

 ■ This will most likely be AWS S3+Dyna-
moDB, Google Cloud Storage or Azure
Storage Account.

 ■ Separate infrastructure (network +
RBAC) of production and non-prod
backends.

 ■ Plan to disable access to state files (net-
work access and RBAC) from outside of
a designated network (e.g. deployment
agent pool).

 ■ Do not keep Terraform backend infra-
structure with the run-time environment.
Use separate account/project/subscrip-
tion etc.

Enable object versioning/soft delete op-
tions on your Terraform backends to avoid
losing changes and, state-files, and in

order to maintain Terraform state history.
In some special cases manual access
to Terraform state files will be required.
Things like refactoring, breaking changes
or fixing defects will require running Terr-
aform state operations by operations per-
sonnel. For such occasions plan extraor-
dinary, controlled access to the Terraform
state using bastion host, VPN etc.

When using Terraform Cloud/Enterprise
with remote backend the tool will handle
the requirements for state storage.

4 5—

TIP! When resources of multiple
projects need to interact with each
other and rely on each other you can
use Terraform data sources to “reach”
resources from different projects.
Terraform allows to have multiple
providers of the same type that, for
example, access different projects/
accounts/subscriptions.

Example: use separate provider and
data source to “find” the company’s
global VPN gateway subnet for
setting up network connectivity for
the runtime environment.

02.2
Divide into multiple
projects
A

Naturally, Terraform allows you to divide the structure into modules. However, you
should consider dividing your entire infrastructure into separate projects. A “Terraform
project” in this description is a single piece of infrastructure that can be introduced in
many environments, usually with a single pipeline. Terraform projects will usually match
cloud architectural patterns like Shared VPC, Landing zone (Azure and AWS), hub-and-
spoke network topology. There are many patterns in AWS Well-Architected Framework,
Azure Cloud Adoption Framework, Architecture Center or Google Cloud Solutions.

Here are some samples:
Terraform Bootstrap
This is needed when Terraform remote
state-files are stored in the cloud. This
is going to be a simple project that will
create the infrastructure required for the
backends of other projects. In general,
avoid stateless projects. But this will be
one of them (the old chicken and egg
problem).

Landing Zone
Have a separate project (or projects) to
set-up the presence in the cloud - a
network or a VPN connection, core
resources, security baseline. Building a
landing zone is a separate topic. See for
example https://www.tranquilitybase.io/
Shared build-time infrastructure
A piece of company infrastructure, usually
global, that handles the build-time opera-
tions. For example:

 ■ Build agent pools
 ■ container registry (or registries)
 ■ core key vaults storing

company certificates
 ■ global DNS configurations etc.

Host runtime infrastructure
Usually, runtime environments have some
prerequisites and pieces of infrastructure
that might be shared between prod and
non-prod environments, such as bastion
hosts, DNS, key vaults. This is also a good
place to configure deployment agent pools
separate for production and non-prod
environments (you may not need separate
for dev1, dev2, uat1, uat2 etc.)

Runtime environments
Naturally, this is the infrastructure under
the applications and services serving the
business. Be sure that there is an
environment to test Terraform scripts,
not necessarily the same that the

application is tested, in order to avoid
interrupting the QA team’s work when
applying potentially imperfect Terraform
configurations.
Moreover, be prepared to divide runtime
environments across teams, services, de-
partments. It might be impossible to have
a single project with the whole “company
production” environment.

Some general
situations that suggest
dividing infrastructure
into projects:

Use different system accounts for
different security levels
Have a separate project when you need to
use a different Terraform system account
for pieces of infrastructure. Otherwise,
you’ll have to give very wide permissions
for a single system account. Examples:

 ■ pieces of infrastructure across multiple
projects or organizational units,

 ■ build-time infrastructure vs runtime
infrastructure,

 ■ separate systems,
 ■ shared infrastructure vs single system/

service,
 ■ serving different regions.

Have a different set of environments
When you identify that for one piece of
infrastructure you only need “prod” and
“non-prod” and for the other part you
will have “dev”, “uat”, “stage” or “prod”,
then this is a sign that these pieces of
infrastructure should be separate.

Build layers and overlays
If the Terraform configuration in one
project grows too big it might become
challenging to handle it. Constructing

Terraform plans will become slower
and refactoring might be very risky.
It might be a good idea to divide the
entire infrastructure into layers. Overlays
may initially look like optional modules
required only in certain environments.
Here are some theoretical examples:

 ■ Shared networking layer - virtual net-
works, firewalls, VPNs,

 ■ Core infrastructure - compute, storage,
Kubernetes,

 ■ Application layer - messaging services,
databases, key vaults, log aggregation,

 ■ Monitoring overlay - custom metrics,
health checks, alerting rules.

Serve different departments/systems
Pieces of infrastructure that have different
change sources or serve different
business areas or departments, usually
have different security levels – in such
cases, access control may be treated
separately with different Terraform
pipelines, release cycles etc. Try to avoid
huge monolithic configurations.

An example of how
to divide infrastructure into
Terraform projects:

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Built-time Infrastructure

TF Backend
(global)

Organization Landing
Zone (global)

CI/CD Infrastructure and
tools (global)

Monitoring obverlay
(dev)

Monitoring obverlay
(dev)

Runtime App (prod)

System A
(dev)

Deploy Agent Pool
(non-prod)

Deploy Agent Pool
(non-prod)

Bastion (non-prod)

Build Agents

Container Registry

Bastion (non-prod)

Shared
networking
(non-prod)

Audit logging
(non-prod)

…
(non-prod)

Shared
networking
(non-prod)

Audit logging
(non-prod)

…
(non-prod)

System A
(stage)

System B
(dev)

System B
(stage)

TF Backend
(non-prod)

TF Backend
(prod)

Monitoring obverlay
(stage)

Monitoring obverlay
(dr)

Runtime App (dr)

NON-PROD runtime Infrastracture

PROD runtime Infrastructure

Host Project (non-prod)

Host Project (non-prod)

02.4
Organize into
modules
A

Terraform Modularization is a wide topic
with a primary purpose of building a
catalogue of reviewed, maintained and
reusable infrastructure components.
Besides a global, public Terraform Registry,
companies build their own module
libraries. This can be done either with the
use of Terraform Cloud/Enterprise or with
use of Git repositories.

Nevertheless, even if a piece of a
Terraform project does not look like a
shared module, it might be worth to
encapsulate it into a submodule. There
are major benefits:

 ■ large infrastructure code
decomposition,

 ■ focusing on single responsibility per
module,

 ■ the code readability improvement,
 ■ following the same
 ■ tracking the dependencies (variables

and outputs) between logical pieces
of infrastructure.

Like with any other
programming language,
modularization brings
value even if modules
are an integral part of a
single repository and
are used just once.

Prepare to handle multiple environments
on day 1. This will be a very complicated
change later and may require heavy
refactoring.

 ■ Make sure that each environment of
each project has its own state-file. Don’t
keep multiple environments (dev/stage/
prod) in a single Terraform state-file.

 ■ Use different Terraform system
accounts for environments. Make sure
early on that the system accounts
have limited permissions and cannot
access each other’s infrastructure.

 ■ Lock-down access to e.g. staging
state file early. It will force you to think
about building an automated and
secure pipeline quickly.

 ■ Prepare non-prod and prod deployment
agent pools early. Lockdown
network access to storage, key vaults,
Kubernetes API etc. from specific virtual
networks of deployment agent pools.

Keep in mind that Terraform does
not allow using variables in the provider
and backend sections. A simple
approach with multiple ‘.tfvars’ files may
be challenging in the long run.

02.3
Handle environments
separately
A

Some options for handling environments

 ■ Use Terraform Workspaces and
terraform init --backend-config option to
switch backends and environments.

 ■ Use the module and directory layout
(e.g. Terraform main-module approach)
that allows handling multiple
environments by making use of module
structure

When building multiple environments,
make sure that you handle differences
properly. Different environments will have
different pricing tiers, VM sizes, or even
some resources totally disabled (WAF,
DDoS protection).

 ■ Use parameters and “feature flags”
to enable/disable optional features
combined with “count” and “for_each”
construct in Terraform,

 ■ If you use defaults make sure that
default is the production setting and
you override non-prod environment
settings,

 ■ You can easily point the differences
per environment and you know how
feature changes across environments,

 ■ Have an explicit prod-like environment
to test with 1:1 production settings.
Have an explicit test for that in the
release procedure.

TIP! In the pipeline’s build step always run “terraform validate” for all environments.
Make sure that this step fails if you forget to set a property. Make sure that it is not
possible to forget about an entire module in your environment.

6 7—

03.
Build a Terraform
Pipeline with CI/CD
A

01. Protect the “master” branch
Configure your Git in such a way that
“push” to the “master” branch is forbidden
and allowed only with a pull request (or
merge request). Set the required steps
(e.g. Terraform “build” must pass) and
required number of approvers from a list.
> Ask: Can I put an arbitrary change into a
branch that is the source of a release?

02. Build a multi-stage pipeline
If possible, build a pipeline that
will visualize that a certain Terraform
configuration version is promoted
from one environment to another.
> Ask: Can I put something in production
without testing in staging? Can I
deploy something from an arbitrary
branch other than “master”?

03. Rely on versions rather than branches
When you are building your pipeline make
sure that you promote an immutable
snapshot of your Terraform configuration.
Avoid using branches for this. Promote
a build artifact or a Git tag instead.
> Ask: Am I 100% sure that I’m
deploying exactly the same version
as tested before?

04. Have a Terraform “build” step
It is not obvious that the Terraform code
can be built. However, at least validating
Terraform against configurations of
all environments and running a plan on
a designated environment will allow
catching obvious errors. Terraform
validate action can be executed without
connecting to a remote backend. It is
worth doing it on the master branch
as well as on a pull request. This can also
allow setting a unique version number
or a tag on the master branch version.
> Ask:: How do I ensure that the
Terraform code has at least proper
syntax and complete configuration?

05. Have a manual approval step
of Terraform plan
This will be one of the hardest
requirements to implement in most
the tools. Start from here. This is to ensure
that the plan is reviewed and approved by
a person and exactly this plan is applied.
> Ask: How do I review what is going to
change in each environment?

06. Ensure that there is only one pending
plan per environment
When a plan is waiting for approval and
some other plan is applied, the first plan
is not true anymore. Prevent concurrent
plans pending on a single environment.
> Ask: How do I ensure that no other
changes are applied between “plan” and
“apply” steps?

07. Protect access to separate system
accounts per environment
Multiple systems accounts need to be
prepared for different environments. The
goal of the pipeline is to ensure that the
access to the system account is provided
securely (i.e. credentials/keys are hidden/
secret, write-only, are not logged in the
console). Only an approved pipeline
should be able to use this system account.
> Ask: Am I able to use the production
Terraform system account in a non-prod
pipeline or non-prod stage?

08. Protect access to separate agent
pools per environment
Agent pools for non-prod and prod
deployments should be separate. Network
access to services like Kubernetes API,
key vaults, sensitive storage etc. should
be limited, including the deployment build
agents. However, non-prod build agents
must not have access to the production
runtime environment. Only approved
pipelines should be able to execute on
production deployment agent pool.
> Ask: Is it possible to run an arbitrary
pipeline on production deployment agent
pools?

09. Have a rollback plan
Rolling changes back usually means
running a release for a previous version of
the Terraform configuration.
> Ask: How do I run a previous version?

B

General steps
to implement a secure
Terraform pipeline

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Follow a GitOps approach
 ■ Rely on Git repositories, branches and

tags to control the process
 ■ Rely on Git access control, permissions

and pull request enforcement
 ■ Use Git webhooks
 ■ Have a separate “code” repository and

“delivery” repository for GitOps control

Besides Terraform Cloud/Enterprise
a popular free tool that
supports GitOps Terraform control is
> https://www.runatlantis.io/

This will depend a lot on the tool that is
available. Each CI/CD tool will have
different features and approaches, more or
less terraform specific. There are
two general options:

Use a built-in mechanism of the CD tool
for release control

 ■ Build-in package versioning
 ■ Secured pipeline/build artifacts
 ■ Release pipelines with the environment

promotion process
 ■ Manual checks and approvals by

entitled people
 ■ Release plans, rollback plans
 ■ Handling system accounts and secrets

NOTE: Terraform Cloud/Terraform
Enterprise is an opinionated solution
addressing some of the aspects of
implementing a secure Terraform
pipeline such as:

 ■ Remote Backend
 ■ Module registry
 ■ Terraform plan review and approval
 ■ Remote Terraform execution
 ■ Secure system accounts credentials

handling

Since it can be used through its UI as well
as API and CLI interfaces it can be used
together with a CI/CD tool, however,
Terraform Cloud/Enterprise is not a CI/
CD tool itself.

8 9—

10. Control user permissions
to environments
Make sure that only certain people can
deploy changes to certain environments.
Implement a four-eye-check (approval by
at least 2 people) for production releases.
Have control over initializing a release and
Terraform plan approval.
> Ask: Can I approve the Terraform plan in
production if I am not permitted?

11. Have just-in-time access control for
Terraform
Introduce checks into the process to
ensure that the production Terraform
system account will be available only
during the time of a planned release.
Alternatively, it can be granted
production-level RBAC permissions only
for the time of the release. This is to make
sure that proper personnel have access to
both the CI/CD pipeline as well as to the
cloud provider during the release. This
is another method of a four-eye-check.
Think: multi-factor authentication for CI/
CD.
> Ask: Can I perform production release
with access to CI/CD pipeline only?

12. Run tests as part of the pipeline
Like any other piece of software, virtual
infrastructure can and should be tested.
Below is the Continuous Compliance
section with some testing guidelines.
Make sure that after deployment to at
least prod-like and prod environments,
there is a step to verify compliance,
security policies and run some tests, even
smoke tests. The purpose is to have quick
feedback.
> Ask: Will I immediately know if my
changed infrastructure is not compliant
with non-functional requirements and
policies?

 ■ Code version is stored as an artifact and promoted from environment to environment
 ■ All “Plan” and “Apply” stages are controlled by pre-stage and post-sage approvals.
 ■ The tool maintains the system credentials per environment and ensures access to

deployment agents.

B

Example of a release
pipeline with the use of
Azure DevOps

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

from terraform.io

 ■ There is a “delivery” repository
(or repositories) to control the actual
deployment to environments

 ■ The “delivery” repository will import
modules from “code” repositories
or module registry

 ■ The release procedure starts with
a pull request with a change to a given
repository

 ■ An automated tool will prepare
a Terraform Plan

 ■ The approval of the plan is implemented
as pull request approval, the merge will
trigger actual release

Example GitOps process
with Terraform Cloud:

10 11—

Development Pull Request
Code Review

Pre-deployment
policy verification

Terraform

04.
Continuous
compliance
A

With the ease and
speed of introducing
changes in resource
configuration of cloud
resources, comes a
great risk of introducing
issues as well as
breaking compliance
rules or company
standards.

The goal of infrastructure testing and
continuous compliance is to ensure
automated verification of infrastructure
rules. For example:

 ■ Limit allowed resource types and loca-
tions,

 ■ Verify machine types and sizes,
 ■ Verify resource configuration (e.g. pa-

rameters, naming, tags, tiers, encryption
configuration),

 ■ Check software versions and extensions
installed on VMs,

 ■ Check audit configuration applied to
resources,

 ■ Verify IAM roles and assignments (e.g.
min/max count of administrators),

 ■ Verify the configuration of Kubernetes
deployments like allowed images, ports,
limits, naming conventions.

Terraform can introduce changes very
quickly and have a huge impact on the in-
frastructure. This is why automated testing
and policy verification is just as important
as in any other programming platform.
It can mean:

 ■ Requirements verification
Automated verification of some
non-functional requirements and
assumptions for the project that need
to be verified continuously before the
sign-off. This is similar to unit/integra-
tion testing in software development.
Usually, the team that creates Terraform
scripts provides the tests as well.

 ■ Compliance as Code
Automated verification of company, or-
ganization or regulatory compliance pol-
icies using a set of rules. Rules can be
related to resource type (e.g. forbidden
services), resource location, machine
types, OS type and version, replica-
tion options, pricing tier/SLA, tagging
or naming conventions etc. required
across a whole organization. A separate
team might provide company-wide poli-
cies and compliance standards.

 ■ Security as Code
Automated verification of security
policies of introduced infrastructure.
Rules can be related to RBAC control,
network, firewalls, cloud access control,
key vaults, keys, secrets and certifi-
cates, encryption etc. required across
the entire organization. Security rules
may be built with the IT Security team
as well as with third-party tooling.

In general, there are two layers of
Infrastructure as Code verification:

 ■ Pre-deployment - Verification of the
Terraform code or Terraform plan, more
akin to static code analysis,

 ■ Post-deployment - Verification of the
resources created in the cloud environ-
ment after Terraform configuration is
applied.

Development
Post-deployment
verification Scheduled

verification

Company
standards
for Terraform

Company
and reulatory
standards &
policies

Security checks
Requirements
verification

NOTE: To address continuous compliance run verification on production-like
environments and in the production always after deployment but not only
then (e.g. daily). Always use a system account with read-only permissions.

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Terraform validate is a built-in tool. It will
check the correctness of syntax, variables
etc. A good idea is to also run at least
a Terraform plan as a validation step to
check if it doesn’t fail with an error. Keep in
mind that running the plan against “empty”
infrastructure may have different results
than a plan against the previous version of
infrastructure.

There are certain tools that allow verifying
Terraform code or plan before it gets
applied with more rules than just syntax
and correctness

 ■ Terraform Sentinel can be used with
Terraform Cloud/Terraform Enterprise.
This tool allows creating a set of com-
pany-wide policies and applying them
to all Terraform projects across multiple
teams to ensure, that each project
adheres to the rules. This tool will verify
the actual plan before the deployment
to live infrastructure and look for not
allowed resource types, configuration
options etc. Think about it as static code
analysis for Terraform, like Sonarqube.

 ■ An open source Terraform Compliance
using Python BDD framework

 ■ A simple tool tflint will also check if
configuration parameters are correct
in a given cloud (for example inexistent
VM instance type). Currently available
for AWS only.

 ■ Forseti Terraform Validator can run For-
seti rules verification against Terraform
plan file. This one is for Google Cloud
only.

 ■ Another example of checking Terraform
files with Python (HCL can also be just
parsed and verified with a programming
language)

04.1
Pre-deployment
verification (build-time)
A

04.2
Post-deployment
verification (runtime)
A

Verification of Terraform code before it
is applied brings just partial value. This
will not verify items applied with custom
scripts (when Terraform does not support
some options) or will not find changes
introduced manually or due to an error.
Therefore, it is also valuable to verify the
running infrastructure.

Testing infrastructure
Each cloud provider exposes the whole
infrastructure as plain REST/JSON API
(or gRPC) as well as SDKs for common
programming languages.

 ■ AWS API Reference and AWS SDKs
 ■ Azure API Reference and SDKs and

resource explorer
 ■ Google Cloud API Reference and API

SDKs

It is very easy to use a language of choice
and a favourite testing framework to easily
create tests with the use of language SDK
or even pure REST API and tools like REST
Assured or JSON Assert.

12 13—

Using regular programming skills, it is very
easy to build a shared, parameterized set
of tests with some effort.
Bash scripting with CLI might not be a
best choice because the tests will become
complex. Using a scripting language
(Python, PowerShell) should be good.
Strongly-typed languages (like Kotlin) helps
a lot when using cloud provider SDK due
to IDE support.

class SamplePolicy: FunSpec({

 val requiredTags = listOf(“system”, “environment”, “managed_by”)

 / **
*This is using Azure SDK
*/

 test(“All resource groups has required tags: $requiredTags”) {

 val azure = Azure.authenticate(tokenCredentials)
 .withSubscription(“SUBSCRIPTION-ID-GOES-HERE”)

 azure.resourceGroups().list()
 .forAll { rg ->
 rg.tags().keys.shouldContainAll(requiredTags)
 }
 }

 / **
* This is using pure API and RestAssured
*/
test(“Soft delete is enabled on an important Key Vault”) {

 val path = “https://management.azure.com/subscriptions/SUBSCRIPTION-ID-GOES-HERE” +
 “/resourceGroups/resource-group-x” +
 “/providers/Microsoft.KeyVault/vaults/imporrant-key-vault?api-version=2018-02-14”
 RestAssured.given()
 .header(“Authorization”, “TOKEN-GOES-HERE”)
 .get(path)
 .then()
 .log().body(true)
 .statusCode(200)
 .body(“properties.enableSoftDelete”, Matchers.equalTo(true))
 }

})

Use a testing framework that
will provide a nice and read-
able test report that can be a
document (BDD rather than
pure JUnit).
The tests can be executed:

 ■ in a live environment (in-
cluding
production) to apply all
requirements checks as well
as security or
compliance policies

 ■ In a deploy → test → unde-
ploy flow
to verify the correctness of
the whole Terraform config-
uration

Here is an example using
Kotlin and Azure SDK:

Here is an example using Kotlin and Azure SDK:

NOTE: In this approach, a native API or SDK is used which is usually the “source of
truth”. This is important when new cloud features are added to 3rd-party tools
(like Terraform or InSpec) with a delay and potential bugs. Relying on 3rd party tools
for testing may cause problems. Sometimes even cloud CLI (bash or PowerShell)
is delayed. API is always implemented first.

B

AWS Config and Control
Tower

AWS Config is a service that
continuously monitors and records AWS
resource configurations and allows
verifying overall compliance against the
configurations specified in the internal
company guidelines. It comes with a set
of around 150 pre-built managed rules as
well with the SDK for creating and testing
custom AWS Config rules.
Since AWS Config rules are in fact AWS
Lambda functions defined in NodeJS or
Python, there is a large library of rules
available in GitHub. A sample fragment of
code in Python:

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Each cloud provider has a native tool
to address company-wide governance
policies. These are:

 ■ AWS Config
 ■ Azure Policy + Azure Security Center
 ■ Forseti Config Validator for GCP

Cloud compliance services are sometimes
provided with a set of rules mapped to
 industry standards such as HIPAA, ISO
27001 or CSA Benchmarks. Creating cus-
tom rules is not always easy. These tools
can scope policy verification over a set of
company projects/accounts/subscriptions
not always “on-demand” during the Terra-
form pipeline run. One of the approaches
observed in large organizations is that
there are separate teams maintaining
company-wide compliance rules and
infrastructure as code. This means that
the infrastructure team needs to adhere
to standards and policies but is not always
the author of new rules. The continuous
policy tools should be used in addition to
infrastructure testing.

AWS Config verification can be woven into
the Terraform Deployment pipeline as a
post-release check. The results are howev-
er not immediate, and some coding will be
required to gather an end-to-end compli-
ance report. Therefore, this is to ensure
that the implemented change still adheres
to company standards rather than to use it
as a testing step.

AWS Config allows grouping the rules
together with remediation actions into
Conformance Packs (also “as a code” using
YAML templates) to be easily deployable
into multiple accounts and regions. Sample
conformance packs:

 ■ Operational Best Practices
for Amazon S3

 ■ Operational Best Practices
for Amazon DynamoDB

 ■ Operational Best Practices for PCI-DSS
 ■ Operational Best Practices for AWS

Identity and Access Management

With the use of AWS Control Tower, it is
possible to:

 ■ integrate AWS Config rules into an end-
to-end compliance and conformance
overview dashboard over a multi-ac-
count organization,

 ■ have an Account Factory for creating
new AWS Accounts with predefined
rules and settings.

In general, AWS Config is a versatile
solution to handle company-wide stand-
ard compliance as a code and security
as a code. It might not be the fastest way
to implement individual solution require-
ments verification, where simple tests may
be easier to maintain. Its use in Terraform
pipeline is possible as an addition to built-
in AWS continuous compliance solution,
but not necessary.

04.3
Built-in cloud
policy tools
A

if not configuration_item[‘configuration’][‘distributionConfig’][‘logging’][‘enabled’]:
 return build_evaluation_from_config_item(configuration_item,
 ‘NON_COMPLIANT’, annotation=’Distribution is not configured to store logs.’)

�

Pros:

 ■ Flexibility, and extensibility since
the rules are actual code in Python or
JavaScript,

 ■ SDK for rules development and a
wide set of open-source rules in
addition to built-in ones,

 ■ Open-source tools for the whole
multi-account Compliance Engine
available as well as integration with
Control Tower.

�

Cons: �

 ■ The rules code can become complex
and constitute a whole programming
project,

 ■ The rule cannot prevent creating a
non-compliant resource (only detective
mode),

 ■ Including asynchronous rules
verification into Terraform CD pipeline
requires a complex solution.

14 15—

Azure Policy is a system built with
declaratively defined rules applied to all
resources in the scope of the assigned
policy. Azure Policies can be assigned on
Azure Subscription level as well as on
Management Group level (a group of
Subscriptions, e.g. whole organization,
all production subscriptions etc.).
Azure provides over 1000 predefined,
parameterized policies. Custom policies

are defined in JSON code and each
policy consists of 3 parts:

 ■ Parameters - they are defined during
the assignment

 ■ Policy Rule - the “if” part of the rule
 ■ Effect - policy can either raise an alert

(audit) or prevent creating a resource
(deny)

A sample fragment of code of a policy:

“policyRule”: {
 “if”: {
 “field”: “[concat(‘tags[‘, parameters(‘tagName’), ‘]’)]”,
 “exists”: “false”
 },
 “then”: {
 “effect”:
 “modify”,
 “details”: {
 “roleDefinitionIds”: [
 “/providers/microsoft.authorization/roleDefinitions/b24988ac-6180-42a0-ab88-20f7382dd24c”
],
 “operations”: [
 {
 “operation”: “add”,
 “field”: “[concat(‘tags[‘, parameters(‘tagName’),
 ‘]’)]”, “value”: “[parameters(‘tagValue’)]”
 }
]
 }
 }
}

B

Azure Policy and Security
Center

Policies in “deny” mode work like
additional validation rules, which means
that a resource that is not passing the
verification will not be created.

In addition to that, policies can remediate
some threats - e.g. automatically install
required VM extensions or modify the
configuration.

Azure Policy check
can be included as a
post-deployment
correctness check in
the Azure DevOps
release pipeline.

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

A sample fragment of code of a policy:

“policyRule”: {
 “if”: {
 “field”: “[concat(‘tags[‘, parameters(‘tagName’), ‘]’)]”,
 “exists”: “false”
 },
 “then”: {
 “effect”:
 “modify”,
 “details”: {
 “roleDefinitionIds”: [
 “/providers/microsoft.authorization/roleDefinitions/b24988ac-6180-42a0-ab88-20f7382dd24c”
],
 “operations”: [
 {
 “operation”: “add”,
 “field”: “[concat(‘tags[‘, parameters(‘tagName’),
 ‘]’)]”, “value”: “[parameters(‘tagValue’)]”
 }
]
 }
 }
}

16 17—

Azure Security Center is a single place to
govern results of all policy checks across
the organization as well as group results of
different threat detection systems (Net-
work, Active Directory, VMs etc.). Since pol-
icies are verified periodically, the Security
Center can address continuous compliance
in Azure providing the alerting mecha-
nism and verification history. To simplify
the process of managing corporate-wide
compliance, companies can also maintain
Azure Blueprints. A blueprint is a combina-
tion of policies and initiatives together with
default resource groups and IAM access
configuration.
Azure Policies are very powerful, but the
tool does not provide a developer-friendly
interface for creating custom rules, espe-
cially, when JSON is used as a language.
Even without custom policies, the set of
predefined policies is impressive and
can address a wide range of compliance
requirements. A complete Compliance as
Code solution may combine infrastructure
tests and Azure policies.

Besides individual policies, there are
several predefined Policy Initiatives in
Azure, for example:

 ■ Audit ISO 27001:2013 controls and
deploy specific VM Extensions to
support audit requirements (56 policy
checks)

 ■ Audit PCI v3.2.1:2018 controls and
deploy specific VM Extensions to
support audit requirements (37 policy
checks)

 ■ Audit CIS Microsoft Azure Foundations
Benchmark 1.1.0 recommendations
and deploy specific supporting VM
Extensions (83 policy checks)

Policy Initiatives are parameterized groups
of policies to be assigned on Subscription
or Management Group level and can be
custom created for company standards.
There is a default Security Center initiative,
containing over 90 configurable policies
and is assigned by default to every Azure
subscription.

�

Pros:

 ■ A large set predefined policies
and initiatives for industry-standard
compliance requirements,

 ■ Built-in integration with Azure DevOps
and Azure Security Center,

 ■ The policy can work in “deny” mode,
 ■ Policy management with initiatives and

blueprints.

�

Cons: �

 ■ Developing custom policies in JSON is
hard,

 ■ Executing policies “on-demand” is not
possible.

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

Forseti and Google
Cloud Security
Command Center
B

Google has open-sourced the Forseti
Security project to address security rules
validation and policy enforcement in
Google Cloud. This is a policy-as-code
system that consists of multiple modules
and works together with:

 ■ Forseti Security service that runs in
Google Cloud and takes configuration
snapshots for policy monitoring.

 ■ Forseti Config Validator that evaluates
GCP resources against Forseti rules.

 ■ Forseti Terraform Validator that verifies
terraform plan against Forseti rules.

The Forseti Rule Library is Open Source
and uses Rego (by Open Policy Agent
framework) files to define policy rule
templates.
Here is a sample policy that forbids public
IPs for Cloud SQL databases:

Here is a sample policy that forbids public IPs for Cloud SQL databases:

Using policy templates only requires
defining constraints in YAML code.
If a policy template for the actual use case
is missing, Forseti provides tools and
guidelines for authoring and testing
custom policies. Setting up Forseti Security
requires running dedicated infrastructure in
GCP that consists of Cloud SQL, compute
and Cloud Storage. Google recommends
creating a separate project to serve as
a policy monitoring environment. Forseti
provides a Terraform configuration for
installation. The server picks policy
configuration deployed to Google Cloud
Storage and then:

 ■ constantly monitors policies,
 ■ can enforce security rules,
 ■ stores Cloud Configuration snapshots

in Cloud SQL.

To increase the overall policy and security
status visibility, Google offers the Security
Command Center dashboard.
Besides Forseti, GCSCC can use other
threat detection systems as a source
of vulnerabilities alerts like:

 ■ Cloud Data Loss Prevention Discovery,
 ■ Anomaly Detection,
 ■ Event Threat Detection,
 ■ 3rd party cloud security tools from

Acalvio, Capsule8, Cavirin, Chef, Check
Point CloudGuard Dome9, Cloudflare,
CloudQuest, McAfee, Qualys, Redblaze,
Redlock, StackRox, Tenable.io, and
Twistlock.

Forseti Security offers complete
compliance-as-code tooling that can be
used as part of Terraform CD pipeline
in the pre-deployment step (with Forseti
Terraform Validator) as well as
post-deployment (with Forseti Config
Validator). Continuous compliance support
with Cloud Command Center and other
plug-in systems adds up to a complete
solution. Being a security-oriented
solution, this may require significant effort
to implement additional custom
non-functional requirements checks, thus,
it might be a good idea to combine
it with infrastructure testing approach.

�

Pros:

 ■ Support for GCP config validation as
well as for Terraform validation,

 ■ Declarative rules language with
tooling support,

 ■ Integration with Security
Command Center.

�

Cons: �

 ■ Requires installation and
maintenance of infrastructure and
setup of open-source components,

 ■ A small library of predefined rules
(around 70 templates) and lack of
industry-standard policy sets
(e.g. CIS Benchmarks, HIPAA etc.),

 ■ Lack of preventive-mode, only
reactive/detection mode.

deny [{
 “msg”: message,
 “details”: metadata,
}] {
 asset := input.asset
 asset.asset_type == “sqladmin.googleapis.com/Instance”

 ip_config := lib.get_default(asset.resource.data.settings, “ipConfiguration”, {})
 ipv4 := lib.get_default(ip_config, “ipv4Enabled”, true)
 ipv4 == true
 message := sprintf(“%v is not allowed to have a Public IP.”, [asset.name])
 metadata := {“resource”: asset.name}
}

18 19—

Here are some examples of
emerging open-source tools addressing
the policy-as-code topic.

InSpec
Chef InSpec is an open Compliance as
Code tool that can run a set of rules on
top of running infrastructure. Policies are
defined in a DSL that is quite descriptive
and readable. Many resource definitions
are available for AWS, Azure and Google
Cloud. The drawback of this solution is that
resource definitions are added to InSpec
with some delay compared to cloud
provider API (just like to Terraform or ev
en to cloud provider’s CLI and SDK)

and some of the resources may be
very hard to test.

Pulumi CrossGuard
Another solution that allows policy as
code is Pulumi CrossGuard. It allows for a
more programmatic approach (JavaScript/
TypeScript) over an SDK supporting
AWS, Azure, GCP as well as Kubernetes.
Here is an example: This is currently in
beta and has the same dependency on 3rd
party provider for resources.

Azure Secure DevOps Kit
Azure Secure DevOps Kit is an
open-source set of policies and rules
implemented in a PowerShell-based
framework and ready to be executed
automatically in a pipeline or using e.g.
Azure Automation. It supports Azure
only, implemented in Microsoft, but it is
not an official Microsoft product. Some
of the policies overlap with the built-in
Azure Security Center.

04.4
3rd party Policy
as Code tools
A

NOTE: Continuous Compliance and
security management for public cloud
solutions is an emerging market for
enterprise-grade solutions. Several
products became available like Check
Point CloudGuard Dome9, CloudQuest
Guardian, Carvin or Qualys.

Piotr Gwiazda
B
Senior Solutions
Architect & Cloud Specialist
GFT Poland
E.: piotr.gwiazda@gft.com

Technical Lead and Cloud Solution Architect, with 12 years of experience.
Certified on professional levels with Google Cloud and MS Azure. Piotr is leading
GFT PL Cloud Practice. Highly experienced with design of multitier solutions for the
financial sector including global investment banks. Often acts as an Agile mentor,
helping organizations to build their Agile mindset.

Stay in touch
A

 blog.gft.com twitter.com/gft_en linkedin.com/company/gft-group facebook.com/GFTGroup >gft.com

GFT Technologies SE BSchelmenwasenstr. 34, 70567 Stuttgart, Germany BT. +49  711  620  420 Bwww.gft.com Binfo@gft.com GFT-201111-WP-TERRAFORM-EN-AEHM-RARR © GFT 2020

Shaping
the future
of digital
business

Partners:
Microsoft
Azure

Secure
Terraform
Delivery
Pipeline

White paper

The last few years is the time of
“-as-code” approaches to infrastructure,
compliance, security, configuration
management etc. Using software to address
hardware or process problems is the most
effective approach, and becomes possible
with hardware virtualization and the cloud.

When infrastructure configuration and scale
changes are introduced in minutes rather
than hours or days, and data or workload can
be placed on the wrong continent just
“by accident”, a totally new approach for
tooling and practices is required. This will
bring a lot more changes in the nearest future
and hopefully, the industry will start
to standardize around well-known tools.

Summary
A

mailto:piotr.gwiazda%40gft.com?subject=Azure%20Terraform
https://blog.gft.com/
https://twitter.com/gft_en
https://www.linkedin.com/company/gft-group/
https://www.facebook.com/GFTGroup
https://www.gft.com/int/en/index/

